By Topic

Integrated Optimization of Video Server Resource and Streaming Quality Over Best-Effort Network

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Hang Yu ; Sch. of Comput., Nat. Univ. of Singapore, Singapore ; Chang, E.-C. ; Tsang Ooi, Wei ; Mun Choon Chan
more authors

A video streaming server needs to adapt its source/channel encoding parameters (or configurations) to changes in network conditions and to differences in users' connection profiles. The adaptation can be achieved by adjusting parameters such as frame rate, error protection ratio, and resolution. Ideally, the server should adapt the serving configurations with respect to the current network and user conditions to improve received video quality. However, adaptations that optimize playable frame rate require intensive computation, and storing all possible configurations requires a tremendous amount of storage. This brings forth the issues of how to obtain good video quality and reduce server resources usage at the same time. We address this issue in this paper. Our approach is based on the observation that transcoding between certain configurations can be performed very efficiently. We propose a framework to compute a set of configurations to store on the server by considering two opposing goals: (a) maximizing expected received quality of the video, and (b) minimizing server resource usage by lowering transcoding cost and expected number of switches between configurations. The second objective also reduces the number of configurations, and therefore reduces the total storage required. Our framework models the relationship among different configurations in a partial order, formulates the search of a good set of configurations as an energy minimization problem, and we use techniques in image segmentation to solve the problem. Experimental results show that our framework relieves the server load and increases the number of clients served, while only slightly reducing the expected frame rate.

Published in:

Circuits and Systems for Video Technology, IEEE Transactions on  (Volume:19 ,  Issue: 3 )