By Topic

Metallic Magnetic Calorimeters for X-Ray Spectroscopy

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

14 Author(s)
Fleischmann, L. ; Kirchhoff-Inst. fur Phys., Univ. Heidelberg, Heidelberg ; Linck, M. ; Burck, A. ; Domesle, C.
more authors

An increasing number of experiments employ low-temperature radiation/particle detectors which are based on a calorimetric detection scheme and operate at temperatures below 100 mK. Metallic magnetic calorimeters use a metallic paramagnetic temperature sensor in tight thermal contact with the X-ray absorber. The magnetization of the sensor is used to monitor the temperature change of the detector upon the absorption of single photons, which is proportional to the absorbed energy. Low-noise high-bandwidth dc superconducting quantum interference devices read out the small changes in magnetization. An energy resolution of DeltaE FWHM = 2.7 eV was obtained for X-ray energies up to 6 keV.

Published in:

Applied Superconductivity, IEEE Transactions on  (Volume:19 ,  Issue: 2 )