By Topic

Analysis of Enhanced Collision Avoidance Scheme Proposed for IEEE 802.11e-Enhanced Distributed Channel Access Protocol

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Meerja, K.A. ; Dept. of Electr. & Comput. Eng., Univ. of Western Ontario, London, ON, Canada ; Shami, A.

In enhanced distributed channel access (EDCA) protocol, small contention window (CW) sizes are used for frequent channel access by high-priority traffic (such as voice). But these small CW sizes, which may be suboptimal for a given network scenario, can introduce more packet collisions, and thereby, reduce overall throughput. This paper proposes enhanced collision avoidance (ECA) scheme for AC_VO access category queues present in EDCA protocol. The proposed ECA scheme alleviates intensive collisions between AC_VO queues to improve voice throughput under the same suboptimal yet necessary (small size) CW restrictions. The proposed ECA scheme is studied in detail using Markov chain numerical analysis and simulations carried out in NS-2 network simulator. The performance of ECA scheme is compared with original (legacy) EDCA protocol in both voice and multimedia scenarios. Also mixed scenarios containing legacy EDCA and ECA stations are presented to study their coexistence. Comparisons reveal that ECA scheme improves voice throughput performance without seriously degrading the throughput of other traffic types.

Published in:

Mobile Computing, IEEE Transactions on  (Volume:8 ,  Issue: 10 )