By Topic

Efficient Uplink Bandwidth Request with Delay Regulation for Real-Time Service in Mobile WiMAX Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Eun-Chan Park ; Dept. of Inf. & Commun. Eng., Dongguk Univ., Seoul, South Korea

The emerging broadband wireless access technology based on IEEE 802.16 is one of the most promising solutions to provide ubiquitous wireless access to the broadband service at low cost. This paper proposes an efficient uplink bandwidth request-allocation algorithm for real-time services in Mobile WiMAX networks based on IEEE 802.16e. In order to minimize bandwidth wastage without degrading quality of service (QoS), we introduce a notion of target delay and propose dual feedback architecture. The proposed algorithm calculates the amount of bandwidth request such that the delay is regulated around the desired level to minimize delay violation and delay jitter for real-time services. Also, it can increase utilization of wireless channel by making use of dual feedback, where the bandwidth request is adjusted based on the information about the backlogged amount of traffic in the queue and the rate mismatch between packet arrival and service rates. Due to the target delay and dual feedback, the proposed scheme can control delay and allocate bandwidth efficiently while satisfying QoS requirement. The stability of the proposed algorithm is analyzed from a control-theoretic viewpoint, and a simple design guideline is derived based on this analysis. By implementing the algorithm in OPNET simulator, its performance is evaluated in terms of queue regulation, optimal bandwidth allocation, delay controllability, and robustness to traffic characteristics.

Published in:

Mobile Computing, IEEE Transactions on  (Volume:8 ,  Issue: 9 )