Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 12:00 PM ET (12:00 - 16:00 UTC). We apologize for the inconvenience.
By Topic

P2P Reputation Management Using Distributed Identities and Decentralized Recommendation Chains

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Dewan, P. ; Intel Corp., Hillsboro, OR, USA ; Dasgupta, P.

Peer-to-peer (P2P) networks are vulnerable to peers who cheat, propagate malicious code, leech on the network, or simply do not cooperate. The traditional security techniques developed for the centralized distributed systems like client-server networks are insufficient for P2P networks by the virtue of their centralized nature. The absence of a central authority in a P2P network poses unique challenges for reputation management in the network. These challenges include identity management of the peers, secure reputation data management, Sybil attacks, and above all, availability of reputation data. In this paper, we present a cryptographic protocol for ensuring secure and timely availability of the reputation data of a peer to other peers at extremely low costs. The past behavior of the peer is encapsulated in its digital reputation, and is subsequently used to predict its future actions. As a result, a peer's reputation motivates it to cooperate and desist from malicious activities. The cryptographic protocol is coupled with self-certification and cryptographic mechanisms for identity management and countering Sybil attack. We illustrate the security and the efficiency of the system analytically and by means of simulations in a completely decentralized Gnutella-like P2P network.

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:22 ,  Issue: 7 )