Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Resolving the Topology Mismatch Problem in Unstructured Peer-to-Peer Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Hung-Chang Hsiao ; Dept. of Comput. Sci. & Inf. Eng., Nat. Cheng-Kung Univ., Tainan, Taiwan ; Hao Liao ; Cheng-Chyun Huang

Prior studies show that more than 70 percent of communication paths in a popular unstructured peer-to-peer (P2P) system (i.e., Gnutella) do not exploit the physical network topology, leading to the topology mismatch problem, and thus, lengthen communication between participating peers. While previous efforts in solving overlay topology matching problems do not guarantee the bounds of performance metrics (e.g., the communication delay between any two overlay peers and the broadcasting scope of any participating peer), in this paper, we present a novel topology matching algorithm that has provable performance qualities. In our proposal, each participating node creates and manages a constant number of overlay connections to other peers in a distributed manner. In rigorous performance analysis, we show that 1) the expected overlay communication delay between any two nodes in our P2P network is a constant; 2) in addition, any joining node has the exponential broadcasting scope in expectation; 3) furthermore, a participating node takes a polylogarithmic overhead to exploit the physical network locality and maintain its flooding scope. Together with extensive simulations, we present our proposal that significantly outperforms two recent solutions, i.e., THANCS and mOverlay, in terms of overlay communication latency and/or broadcasting scope.

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:20 ,  Issue: 11 )