By Topic

Design Optimization of Charge Preamplifiers With CMOS Processes in the 100 nm Gate Length Regime

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)

Low noise design of charge sensitive amplifiers in deep submicron CMOS technologies is discussed based on the experimental characterization of transistors belonging to a 130 nm and a 90 nm minimum channel length processes. After briefly examining the main preamplifier noise sources, residing in the input element, achievable resolution limits in charge measuring systems employing such technologies are discussed under different detector capacitance, processing time and power dissipation constraints. The equivalent noise charge (ENC) model adopted in this work takes into account the behavior of series 1/f noise as a function of the overdrive voltage in PMOS devices. Moreover, noise in the gate current, whose effects could be neglected in past CMOS technologies featuring larger gate oxide thickness, is shown to play a role in the optimization process, significantly affecting the preamplifier performance at long shaping times. The extent of this contribution, besides depending on the drain current in the input device, is also determined by its drain voltage, which therefore may become a critical parameter in the design of low noise analog blocks.

Published in:

Nuclear Science, IEEE Transactions on  (Volume:56 ,  Issue: 1 )