By Topic

Combined Reconstruction and Motion Correction in SPECT Imaging

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

Due to the long imaging times in SPECT, patient motion is inevitable and constitutes a serious problem for any reconstruction algorithm. The measured inconsistent projection data lead to reconstruction artifacts which can significantly affect the diagnostic accuracy of SPECT if not corrected. To address this problem a new approach for motion correction is introduced. It is purely based on the measured SPECT data and therefore belongs to the data-driven motion correction algorithm class. However, it does overcome some of the shortcomings of conventional methods. This is mainly due to the innovative idea to combine reconstruction and motion correction in one optimization problem. The scheme allows for the correction of abrupt and gradual patient motion. To demonstrate the performance of the proposed scheme extensive 3D tests with numerical phantoms for 3D rigid motion are presented. In addition, a test with real patient data is shown. Each test shows an impressive improvement of the quality of the reconstructed image. In this note, only rigid movements are considered. The extension to non-linear motion, as for example breathing or cardiac motion, is straightforward and will be investigated in a forthcoming paper.

Published in:

IEEE Transactions on Nuclear Science  (Volume:56 ,  Issue: 1 )