By Topic

Analytical Model of Slotted Air-Gap Surface Mounted Permanent-Magnet Synchronous Motor With Magnet Bars Magnetized in the Shifting Direction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)

An analytical model is presented, which uses two-dimensional field theory in polar coordinates to determine the flux density distribution, cogging torque, back EMF and electromagnetic torque in the slotted air gap of permanent-magnet motors with surface mounted magnet bars which are magnetized in shifting direction. The magnet arc to pole pitch ratio in the motor is not necessarily equal to unity like in the case of Halbach array magnetization. The effect of stator slots is introduced by modulating the magnetic field distribution in the slotless stator by the complex relative air-gap permeance. With this complex permeance, the radial and tangential components of flux density are calculated. In the analytical and numerical study a finite number of magnet bars, which is considered sufficient to get a sinusoidal magnetization, is used. The influence of the number of magnet bars on magnetization is also investigated. The accuracy of the developed model is verified by comparing its results with those obtained from experimental measurement and previously validated linear and nonlinear numerical finite element code.

Published in:

Magnetics, IEEE Transactions on  (Volume:45 ,  Issue: 2 )