By Topic

Mechanical Demagnetization at Head Disk Interface of Perpendicular Recording

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Junguo Xu ; Central Res. Lab., Hitachi Ltd., Fujisawa ; Furukawa, M. ; Nakamura, A. ; Honda, M.

We investigated the mechanism of nanometer-depth scratches triggering adjacent track interference (ATI) by applying DC erasure magnetic fields to scratch areas in recording media and measuring demagnetization by imaging magnetic bits using magnetic force microscopy. We found that the magnetic coercivity and anisotropy (Ku) of the scratch area is decreased to about half compared to that of a normal area. Section analysis of the recording layer under and along the scratch by transmission electron microscope revealed that the nanometer-depth scratch causes both c-axis tilt and slip of the (0001) plane of the close-packed hexagonal lattice structure of the grains. Micro-magnetic simulation indicated that the c-axis tilt only had a secondary effect on ATI but that the Ku decrease had a significant effect. On the basis of these transmission electron microscope analyses and the micro-magnetic simulation, we then concluded that the slip of crystal plane (0001) reduced Ku by introducing a stacking fault and essentially reduced coercivity, resulting in ATI.

Published in:

Magnetics, IEEE Transactions on  (Volume:45 ,  Issue: 2 )