Cart (Loading....) | Create Account
Close category search window
 

Equivalent Magnetization Current Method Applied to the Design of Gradient Coils for Magnetic Resonance Imaging

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Lopez, H.S. ; Sch. of Inf. Technol. & Electr. Eng., Univ. of Queensland, Brisbane, QLD ; Liu, Feng ; Poole, M. ; Crozier, S.

A new method is described for the design of gradient coils for magnetic resonance imaging systems. The method is based on the known equivalence between a magnetized volume surrounded by a conducting surface and its equivalent representation by a surface current density. The curl of a vertical magnetization vector of a magnetized thin volume is equivalent to a surface current density whose stream line defines a coil current pattern. This concept is applied to the design of gradient coils of arbitrary shape. The thin magnetized volume is discretized in small triangular elements. By calculating the contribution of each magnetized block at target points a field source matrix is obtained. The equivalent magnetization current concept is applied to obtain the equivalent coil impedance, force and torques. A quadratic programming optimization algorithm is used to obtain the stream-magnetization-thickness function value at each node such that coils of optimal performance are obtained. This method can be used for gradient coils wound on arbitrary surface shapes and can be applied to hybrid current/iron solutions. A variety of examples are shown to demonstrate the versatility of the method. A novel partially shielded 3-D biplanar gradient coil for open MRI magnets is presented.

Published in:

Magnetics, IEEE Transactions on  (Volume:45 ,  Issue: 2 )

Date of Publication:

Feb. 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.