By Topic

Bayesian Image Recovery for Dendritic Structures Under Low Signal-to-Noise Conditions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Fudenberg, G. ; Dept. of Stat. & Center for Theor. Neurosci., Columbia Univ., New York, NY ; Paninski, L.

Experimental research seeking to quantify neuronal structure constantly contends with restrictions on image resolution and variability. In particular, experimentalists often need to analyze images with very low signal-to-noise ratio (SNR). In many experiments, dye toxicity scales with the light intensity; this leads experimentalists to reduce image SNR in order to preserve the viability of the specimen. In this paper, we present a Bayesian approach for estimating the neuronal shape given low-SNR observations. This Bayesian framework has two major advantages. First, the method effectively incorporates known facts about 1) the image formation process, including blur and the Poisson nature of image noise at low intensities, and 2) dendritic shape, including the fact that dendrites are simply-connected geometric structures with smooth boundaries. Second, we may employ standard Markov chain Monte Carlo techniques for quantifying the posterior uncertainty in our estimate of the dendritic shape. We describe an efficient computational implementation of these methods and demonstrate the algorithm's performance on simulated noisy two-photon laser-scanning microscopy images.

Published in:

Image Processing, IEEE Transactions on  (Volume:18 ,  Issue: 3 )