By Topic

Robust Exact Pole Placement via an LMI-Based Algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Ait Rami, M. ; Dept. of Ing. de Sist. y Autom., Univ. de Valladolid, Valladolid ; El Faiz, S. ; Benzaouia, A. ; Tadeo, F.

This technical note deals with the robust exact pole placement problem: pole placement algorithms that guarantee a small variation of the assigned poles against possible perturbations. The solution to this problem is related to the solvability of a Sylvester-like equation. Thus, the main issue is to compute a well-conditioned solution to this equation. Also, the best candidate solution must possess the minimal condition number, to reduce sensitivity to perturbation. This problem is cast as a global optimization under linear matrix inequality constraints, for which a numerical convergent algorithm is provided and compared with the most attractive methods in the literature.

Published in:

Automatic Control, IEEE Transactions on  (Volume:54 ,  Issue: 2 )