Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Notes on the Tightness of the Hybrid CramÉr–Rao Lower Bound

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Noam, Y. ; Sch. of Electr. Eng., Tel Aviv Univ., Tel Aviv ; Messer, H.

In this paper, we study the properties of the hybrid Cramer-Rao bound (HCRB). We first address the problem of estimating unknown deterministic parameters in the presence of nuisance random parameters. We specify a necessary and sufficient condition under which the HCRB of the nonrandom parameters is equal to the Cramer-Rao bound (CRB). In this case, the HCRB is asymptotically tight [in high signal-to-noise ratio (SNR) or in large sample scenarios], and, therefore, useful. This condition can be evaluated even when the CRB cannot be evaluated analytically. If this condition is not satisfied, we show that the HCRB on the nonrandom parameters is always looser than the CRB. We then address the problem in which the random parameters are not nuisance. In this case, both random and nonrandom parameters need to be estimated. We provide a necessary and sufficient condition for the HCRB to be tight. Furthermore, we show that if the HCRB is tight, it is obtained by the maximum likelihood/maximum a posteriori probability (ML/MAP) estimator, which is shown to be an unbiased estimator which estimates both random and nonrandom parameters simultaneously optimally (in the minimum mean-square-error sense).

Published in:

Signal Processing, IEEE Transactions on  (Volume:57 ,  Issue: 6 )