By Topic

An Adaptive Penalty Formulation for Constrained Evolutionary Optimization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Tessema, B. ; Sch. of Electr. & Comput. Eng., Oklahoma State Univ., Stillwater, OK ; Yen, G.G.

This paper proposes an adaptive penalty function for solving constrained optimization problems using genetic algorithms. The proposed method aims to exploit infeasible individuals with low objective value and low constraint violation. The number of feasible individuals in the population is used to guide the search process either toward finding more feasible individuals or searching for the optimum solution. The proposed method is simple to implement and does not need any parameter tuning. The performance of the algorithm is tested on 22 benchmark functions in the literature. The results show that the proposed approach is able to find very good solutions comparable to the chosen state-of-the-art designs. Furthermore, it is able to find feasible solutions in every run for all of the benchmark functions tested.

Published in:

Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions on  (Volume:39 ,  Issue: 3 )