By Topic

Towards the Validation of Plagiarism Detection Tools by Means of Grammar Evolution

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Cebrian, M. ; Dept. of Comput. Sci., Brown Univ., Providence, RI ; Alfonseca, M. ; Ortega, A.

Student plagiarism is a major problem in universities worldwide. In this paper, we focus on plagiarism in answers to computer programming assignments, where students mix and/or modify one or more original solutions to obtain counterfeits. Although several software tools have been developed to help the tedious and time consuming task of detecting plagiarism, little has been done to assess their quality, because determining the real authorship of the whole submission corpus is practically impossible for markers. In this paper, we present a grammar evolution technique which generates benchmarks for testing plagiarism detection tools. Given a programming language, our technique generates a set of original solutions to an assignment, together with a set of plagiarisms of the former set which mimic the basic plagiarism techniques performed by students. The authorship of the submission corpus is predefined by the user, providing a base for the assessment and further comparison of copy-catching tools. We give empirical evidence of the suitability of our approach by studying the behavior of one advanced plagiarism detection tool (AC) on four benchmarks coded in APL2, generated with our technique.

Published in:

Evolutionary Computation, IEEE Transactions on  (Volume:13 ,  Issue: 3 )