Cart (Loading....) | Create Account
Close category search window
 

Residual Life Predictions in the Absence of Prior Degradation Knowledge

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Gebraeel, N. ; Milton H. Stewart Sch. of Ind. & Syst. Eng., Georgia Inst. of Technol., Atlanta, GA ; Elwany, A. ; Jing Pan

Recent developments in degradation modeling have been targeted towards utilizing degradation-based sensory signals to predict residual life distributions. Typically, these models consist of stochastic parameters that are estimated with the aid of an historical database of degradation signals. In many applications, building a degradation database, where components are run-to-failure, may be very expensive and time consuming, as in the case of generators or jet engines. The degradation modeling framework presented herein addresses this challenge by utilizing failure time data, which are easier to obtain, and readily available (relative to sensor-based degradation signals) from historical maintenance/repair records. Failure time values are first fitted to a Bernstein distribution whose parameters are then used to estimate the prior distributions of the stochastic parameters of an initial degradation model. Once a complete realization of a degradation signal is observed, the assumptions of the initial degradation model are revised and improved for future predictions. This approach is validated using real world vibration-based degradation information from a rotating machinery application.

Published in:

Reliability, IEEE Transactions on  (Volume:58 ,  Issue: 1 )

Date of Publication:

March 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.