By Topic

Parameter Identification in Degradation Modeling by Reversible-Jump Markov Chain Monte Carlo

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Zio, E. ; Energy Dept., Politec. di Milano, Milan ; Zoia, A.

In this work, the reversible-jump Markov chain Monte Carlo technique is applied for identifying the parameters governing stochastic processes of component degradation. Two case studies are examined concerning the evolution of deteriorating systems whose parameters undergo step changes in time. The method turns out to be capable of identifying the instances of change in behavior, and of estimating the parameter values. A Bayesian updating strategy is proposed to refine the parameter estimates as new data are made available.

Published in:

Reliability, IEEE Transactions on  (Volume:58 ,  Issue: 1 )