By Topic

Flexible Chip-Scale Package and Interconnect for Implantable MEMS Movable Microelectrodes for the Brain

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jackson, N. ; Harrington Dept. of Bioeng., Arizona State Univ., Tempe, AZ ; Muthuswamy, J.

We report here a novel approach called microelectromechanical systems (MEMS) microflex interconnect (MMFI) technology for packaging a new generation of bioMEMS devices that involve movable microelectrodes implanted in brain tissue. MMFI addresses the need for the following: (1) operating space for movable parts and (2) flexible interconnects for mechanical isolation. We fabricated a thin polyimide substrate with embedded bond pads, vias, and conducting traces for the interconnect with a backside dry etch, so that the flexible substrate can act as a thin-film cap for the MEMS package. A double-gold-stud-bump rivet-bonding mechanism was used to form electrical connections to the chip and also to provide a spacing of approximately 15-20 mum for the movable parts. The MMFI approach achieved a chip-scale package that is lightweight and biocompatible and has flexible interconnects and no underfill. Reliability tests demonstrated minimal increases of 0.35, 0.23, and 0.15 mOmega in mean contact resistances under high humidity, thermal cycling, and thermal shock conditions, respectively. High-temperature tests resulted in increases of > 90 and ~ 4.2 mOmega in resistance when aluminum and gold bond pads were used, respectively. The mean time to failure was estimated to be at least one year under physiological conditions. We conclude that MMFI technology is a feasible and reliable approach for packaging and interconnecting bioMEMS devices.

Published in:

Microelectromechanical Systems, Journal of  (Volume:18 ,  Issue: 2 )