Cart (Loading....) | Create Account
Close category search window

Comparison of Analytic and Algebraic Methods for Motion-Compensated Cone-Beam CT Reconstruction of the Thorax

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Rit, S. ; LIRIS, Univ. Lumiere Lyon 2, Bron, France ; Sarrut, D. ; Desbat, L.

Respiratory motion is a major concern in cone-beam (CB) computed tomography (CT) of the thorax. It causes artifacts such as blur, streaks, and bands, in particular when using slow-rotating scanners mounted on the gantry of linear accelerators. In this paper, we compare two approaches for motion-compensated CBCT reconstruction of the thorax. The first one is analytic; it is heuristically adapted from the method of Feldkamp, Davis, and Kress (FDK). The second one is algebraic: the system of linear equations is generated using a new algorithm for the projection of deformable volumes and solved using the simultaneous algebraic reconstruction technique (SART). For both methods, we propose to estimate the motion on patient data using a previously acquired 4-D CT image. The methods were tested on two digital and one mechanical motion-controlled phantoms and on a patient dataset. Our results indicate that the two methods correct most motion artifacts. However, the analytic method does not fully correct streaks and bands even if the motion is perfectly estimated due to the underlying approximation. In contrast, the algebraic method allows us full correction of respiratory-induced artifacts.

Published in:

Medical Imaging, IEEE Transactions on  (Volume:28 ,  Issue: 10 )

Date of Publication:

Oct. 2009

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.