Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Comparison of Long-Wave Infrared Quantum-Dots-in-a-Well and Quantum-Well Focal Plane Arrays

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

10 Author(s)
Andrews, J.R. ; Remote Sensing Div., Naval Res. Lab., Albuquerque, NM ; Restaino, S.R. ; Vandervelde, T.E. ; Brown, Jay S
more authors

This paper reports on a comparison between a commercially available quantum-well infrared focal plane array (FPA) and a custom quantum-dot (QD)-in-a-well (DWELL) infrared FPA in the long-wave infrared (LWIR). The DWELL detectors consist of an active region composed of InAs QDs embedded in In0.15Ga0.85As quantum wells. DWELL samples were grown using molecular beam epitaxy and fabricated into 320 times 256 pixels FPA with a flip-chip indium bump technique. Both the DWELL and QmagiQ commercial quantum-well detector were hybridized to an Indigo ISC9705 readout circuit and tested in the same camera system. Calibrated blackbody measurements at a device temperature of 60 K with LWIR optics yield a noise equivalent change in temperature of 17 mK and 91 mK for quantum-well and DWELL FPAs operating at 0.95- and 0.58-V biases, respectively. The comparison of the DWELL and quantum-well FPA when imaging a 35degC black body showed that the DWELL had a signal-to-noise ratio of 124 while the quantum-well FPA showed 1961. As well, the quantum-well FPA showed a higher collection efficiency of 1.3 compared to the DWELL.

Published in:

Electron Devices, IEEE Transactions on  (Volume:56 ,  Issue: 3 )