By Topic

HIREL: An Incremental Clustering Algorithm for Relational Datasets

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Tao Li ; Dept. of Comput. Sci., Univ. of Warwick Coventry, Coventry ; Sarabjot S. Anand

Traditional clustering approaches usually analyze static datasets in which objects are kept unchanged after being processed, but many practical datasets are dynamically modified which means some previously learned patterns have to be updated accordingly. Re-clustering the whole dataset from scratch is not a good choice due to the frequent data modifications and the limited out-of-service time, so the development of incremental clustering approaches is highly desirable. Besides that, propositional clustering algorithms are not suitable for relational datasets because of their quadratic computational complexity. In this paper, we propose an incremental clustering algorithm that requires only one pass of the relational dataset. The utilization of the Representative Objects and the balanced Search Tree greatly accelerate the learning procedure. Experimental results prove the effectiveness of our algorithm.

Published in:

2008 Eighth IEEE International Conference on Data Mining

Date of Conference:

15-19 Dec. 2008