Cart (Loading....) | Create Account
Close category search window
 

Scalable Tensor Decompositions for Multi-aspect Data Mining

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)

Modern applications such as Internet traffic, telecommunication records, and large-scale social networks generate massive amounts of data with multiple aspects and high dimensionalities. Tensors (i.e., multi-way arrays) provide a natural representation for such data. Consequently, tensor decompositions such as Tucker become important tools for summarization and analysis. One major challenge is how to deal with high-dimensional, sparse data. In other words, how do we compute decompositions of tensors where most of the entries of the tensor are zero. Specialized techniques are needed for computing the Tucker decompositions for sparse tensors because standard algorithms do not account for the sparsity of the data. As a result, a surprising phenomenon is observed by practitioners: Despite the fact that there is enough memory to store both the input tensors and the factorized output tensors, memory overflows occur during the tensor factorization process. To address this intermediate blowup problem, we propose Memory-Efficient Tucker (MET). Based on the available memory, MET adaptively selects the right execution strategy during the decomposition. We provide quantitative and qualitative evaluation of MET on real tensors. It achieves over 1000X space reduction without sacrificing speed; it also allows us to work with much larger tensors that were too big to handle before. Finally, we demonstrate a data mining case-study using MET.

Published in:

Data Mining, 2008. ICDM '08. Eighth IEEE International Conference on

Date of Conference:

15-19 Dec. 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.