By Topic

Learning on Weighted Hypergraphs to Integrate Protein Interactions and Gene Expressions for Cancer Outcome Prediction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
TaeHyun Hwang ; Dept. of Comput. Sci. & Eng., Univ. of Minnesota Twin Cities, Minneapolis, MN ; Ze Tian ; Rui Kuang ; Kocher, J.-P.

Building reliable predictive models from multiple complementary genomic data for cancer study is a crucial step towards successful cancer treatment and a full understanding of the underlying biological principles. To tackle this challenging data integration problem, we propose a hypergraph-based learning algorithm called HyperGene to integrate microarray gene expressions and protein-protein interactions for cancer outcome prediction and biomarker identification. HyperGene is a robust two-step iterative method that alternatively finds the optimal outcome prediction and the optimal weighting of the marker genes guided by a protein-protein interaction network. Under the hypothesis that cancer-related genes tend to interact with each other, the HyperGene algorithm uses a protein-protein interaction network as prior knowledge by imposing a consistent weighting of interacting genes. Our experimental results on two large-scale breast cancer gene expression datasets show that HyperGene utilizing a curated protein-protein interaction network achieves significantly improved cancer outcome prediction. Moreover, HyperGene can also retrieve many known cancer genes as highly weighted marker genes.

Published in:

Data Mining, 2008. ICDM '08. Eighth IEEE International Conference on

Date of Conference:

15-19 Dec. 2008