By Topic

Representing and learning Boolean functions of multivalued features

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Hampson, S.E. ; Dept. of Inf. & Comput. Sci., California Univ., Irvine, CA, USA ; Volper, D.J.

An analysis and empirical measurement of threshold linear functions of multivalued features is presented. The number of thresholded linear functions, maximum weight size, training speed, and the number of nodes necessary to represent arbitrary Boolean functions are all shown to increase polynomially with the number of distinct values the input features can assume and exponentially with the number of features. Two network training algorithms, focusing and back propagation, are described. Empirically, they are capable of learning arbitrary Boolean functions of multivalued features in a two-level net. Focusing is proved to converge to a correct classification and permits some time-space complexity analysis. Training time for this algorithm is polynomial in the number of values of a feature can assume, and exponential in the number of features. Back propagation is not necessarily convergent, but for randomly generated Boolean functions, the empirical behavior of the implementation is similar to that of the focusing algorithm

Published in:

Systems, Man and Cybernetics, IEEE Transactions on  (Volume:20 ,  Issue: 1 )