By Topic

A keyphrase based approach to interactive meeting summarization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Korbinian Riedhammer ; Computer Science Dept. 5, University of Erlangen-Nuremberg, GERMANY ; Benoit Favre ; Dilek Hakkani-Tur

Rooted in multi-document summarization, maximum marginal relevance (MMR) is a widely used algorithm for meeting summarization (MS). A major problem in extractive MS using MMR is finding a proper query: the centroid based query which is commonly used in the absence of a manually specified query, can not significantly outperform a simple baseline system. We introduce a simple yet robust algorithm to automatically extract keyphrases (KP) from a meeting which can then be used as a query in the MMR algorithm. We show that the KP based system significantly outperforms both baseline and centroid based systems. As human refined KPs show even better summarization performance, we outline how to integrate the KP approach into a graphical user interface allowing interactive summarization to match the user's needs in terms of summary length and topic focus.

Published in:

Spoken Language Technology Workshop, 2008. SLT 2008. IEEE

Date of Conference:

15-19 Dec. 2008