By Topic

Joint generative and discriminative models for spoken language understanding

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Dinarelli, M. ; Dept. of Eng. & Inf. Sci., Univ. of Trento, Trento ; Moschitti, A. ; Riccardi, G.

Spoken Language Understanding aims at mapping a natural language spoken sentence into a semantic representation. In the last decade two main approaches have been pursued: generative and discriminative models. The former is more robust to overfitting whereas the latter is more robust to many irrelevant features. Additionally, the way in which these approaches encode prior knowledge is very different and their relative performance changes based on the task. In this paper we describe a training framework where both models are used: a generative model produces a list of ranked hypotheses whereas a discriminative model, depending on string kernels and Support Vector Machines, re-ranks such list. We tested such approach on a new corpus produced in the European LUNA project. The results show a large improvement on the state-of-the-art in concept segmentation and labeling.

Published in:

Spoken Language Technology Workshop, 2008. SLT 2008. IEEE

Date of Conference:

15-19 Dec. 2008