By Topic

Optimizing classification techniques using Genetic Programming approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Saraee, M.H. ; Dept. of Electr. & Comput. Eng., Isfahan Univ. of Technol., Isfahan ; Sadjady, R.S.

Genetic programming (GP) is a branch of genetic algorithms (GA) that searches for the best operation or computer program in search space of operations. At the same time classification is a data mining technique used to build model of data classes which can be used to predict future trends. In this paper GP has been employed for the implementation of the classification technique. GP properties can facilitate generating new and optimized classification rules that are not discovered by the existing traditional classification techniques. In addition we will show that GA approach is superior to traditional methods in regard to performance both on time and space requirements for processing.

Published in:

Multitopic Conference, 2008. INMIC 2008. IEEE International

Date of Conference:

23-24 Dec. 2008