Cart (Loading....) | Create Account
Close category search window
 

Reliable Communication in the Absence of a Common Clock

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Yeung, R.W. ; Dept. of Inf. Eng., Chinese Univ. of Hong Kong, Hong Kong ; Ning Cai ; Siu-Wai Ho ; Wagner, A.B.

We introduce the continuous time asynchronous channel as a model for time jitter in a communication system with no common clock between the transmitter and the receiver. We have obtained a simple characterization for an optimal zero-error self-synchronizable code for the asynchronous channel. The capacity of this channel is determined by both a combinatorial approach and a probabilistic approach. Our results unveil the somewhat surprising fact that it is not necessary for the receiver clock to resynchronize with the transmitter clock within a fixed maximum time in order to achieve reliable communication. This means that no upper limit should be imposed on the run lengths of the self-synchronization code as in the case of run-length limited (RLL) codes which are commonly used in magnetic recording.

Published in:

Information Theory, IEEE Transactions on  (Volume:55 ,  Issue: 2 )

Date of Publication:

Feb. 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.