By Topic

A comprehensive study of suppression of boron penetration by amorphous-Si gate in P+-gate PMOS devices

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Lin, K.C. ; Inst. of Electron., Nat. Chiao Tung Univ., Hsinchu, Taiwan ; Kuei-Chi Juan ; Chun-Yen Chang ; Pan, F.-M.
more authors

This paper presents a comprehensive study of the impact of the silicon gate structure on the suppression of boron penetration in p+-gate devices. The characteristics and reliability for different gate structures (poly-Si, α-Si, poly-Si/poly-Si, poly-Si/α-Si, α-Si/poly-Si, and α-Si/α-Si) in p + polygate PMOS devices are investigated in detail. The suppression of boron penetration by the nitrided gate oxide is also discussed. The comparison is based on flatband voltage shift as well as the value of charge to breakdown. Results show that the effect of boron diffusion through the thin gate oxide in p+ polygate PMOS devices can be significantly suppressed by employing the as-deposited amorphous silicon gate. Stacked structures can also be employed to suppress boron penetration at the expense of higher polygate resistance. The single layer as-deposited amorphous silicon is a suitable silicon gate material in the p+-gate PMOS device for future dual-gate CMOS process. In addition, by employing a long time annealing at 600°C prior to p+-gate ion implantation and activation, further improvements in suppression of boron penetration, polygate resistance, and gate oxide reliability can be achieved for the as-deposited amorphous-Si gate. Modifying the silicon gate structure instead of the gate dielectrics is an effective approach to suppress the boron penetration effect

Published in:

Electron Devices, IEEE Transactions on  (Volume:42 ,  Issue: 12 )