By Topic

Optimization of line-focusing geometry for efficient nonlinear frequency conversion from copper-vapor lasers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Coutts, D.W. ; Centre for Lasers & Applications, Macquarie Univ., North Ryde, NSW, Australia

Detailed parametric investigations of line foci for efficient nonlinear frequency conversion of copper-vapor lasers are presented. For a single medium-scale copper-vapor laser (nominally 20 W), the optimum focal geometry for efficient second-harmonic and sum-frequency generation in BBO is to focus a 3.75-mm-diameter beam into the crystal with an f=60 mm cylindrical lens, Using such a focal geometry, UV powers of up to 1.75 W (SHG of the green), 1.2 W (SHG yellow), and 1.5 W (SFG) have been produced with peak instantaneous conversion efficiency of up to 48%. Conversion efficiencies are most sensitive to the F-number of the cylindrical focusing, with the optimum F-number being approximately 16, and are relatively insensitive to the width of the focused beam

Published in:

Quantum Electronics, IEEE Journal of  (Volume:31 ,  Issue: 12 )