By Topic

Modeling second-order nonlinear effects in optical waveguides using a parallel-processing beam propagation method

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Masoudi, H.M. ; Dept. of Electr. Eng., King Fahd Univ. of Pet. & Miner., Dhahran, Saudi Arabia ; Arnold, J.M.

In this work, we present a simple efficient numerical solution for the three-dimensional coupled wave equations containing a second-order nonlinearity, using an explicit finite difference beam propagation method (EFD BPM). The linear EFD-BPM is known to be very efficient and to gain large speed up when implemented on parallel computers. The new nonlinear version of the EFD-BPM has the same features of the linear counterpart in using two separate computational windows, one for the fundamental field and the other for the second-harmonic field. We demonstrate the implementation and discuss the application of this method to a nonlinear rib waveguide using the quasi-phase-matching technique

Published in:

Quantum Electronics, IEEE Journal of  (Volume:31 ,  Issue: 12 )