By Topic

Nonblocking copy networks in multi-channel switching

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Min, P.S. ; Dept. of Electr. Eng., Washington Univ., St. Louis, MO, USA ; Hegde, M.V. ; Saidi, H. ; Chandra, A.

This paper develops a copy network architecture that can maintain the cell sequence integrity in multi-channel ATM switching. The architecture is internally nonblocking in the sense that the copying process of cells is constrained only by the availability of output channels. By using a relative ordering among the inputs, shared buffering, and a new switching paradigm called the nonblocking binary group network, we show how the cell sequence integrity can be maintained. Next, assuming the fanout request values of cells are distributed independently from cell to cell, we formulate a method of analyzing the performance of the copy network. This method uses the technique of tagged Markov chains to derive the stationary distributions for the number of cells in the copy network from which, delay, throughput, and cell loss probability can be accurately calculated as critical performance measures. We conduct a numerical study for the proposed architecture using this method wherein the effects of key network and traffic variables such as buffer and network sizes, and the mean and the variance of fanout request values are determined under arbitrary types of fanout distribution. Finally, we quantify the performance improvement due to fanout splitting which allows the fanout request from a single cell to be satisfied over multiple time slots

Published in:

Networking, IEEE/ACM Transactions on  (Volume:3 ,  Issue: 6 )