Cart (Loading....) | Create Account
Close category search window
 

Vision-Based Target Tracking and Collision Avoidance for Two Autonomous Robotic Fish

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yonghui Hu ; Intell. Control Lab., Peking Univ., Beijing ; Wei Zhao ; Long Wang

A new type of vision-based autonomous robotic fish capable of 3-D locomotion is developed in this paper. Based on our robotic fish prototype, the forces and moments acting on its fins and body are analyzed, and the governing motion equations are derived. We further investigate a decentralized control method in target-tracking and collision-avoidance task for two autonomous robotic fish. Most of previous work on the task strategies of autonomous robots is focused on terrestrial robots and seldom deals with underwater applications due to the uncertainties and complexity in a hydro environment. To address this challenge in such an underwater task, a situated-behavior-based decentralized control is employed on each robotic fish according to its visual data. On dealing with motion planning of the fish during target tracking and collision avoidance, a control law by a combination of an attractive force toward a target and a repulsive force for collision avoidance is utilized. Experimental results of the task performed by two autonomous robotic fish validate the effectiveness of the proposed method.

Published in:

Industrial Electronics, IEEE Transactions on  (Volume:56 ,  Issue: 5 )

Date of Publication:

May 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.