By Topic

Model and Experimental Characterization of the Dynamic Behavior of Low-Power Carbon Monoxide MOX Sensors Operated With Pulsed Temperature Profiles

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

9 Author(s)
Bicelli, S. ; Dept. of Electron. for Autom., Univ. of Brescia, Brescia ; Depari, A. ; Faglia, G. ; Flammini, A.
more authors

Wireless sensor networks for home automation or environment monitoring require low-cost low-power sensors. Carbon monoxide (CO) metal-oxide (MOX) sensors could be suitable in terms of device cost, but they show some severe limits, such as the need to be heated, which means large power consumption and the need for complex and frequent calibration procedures, which increases the overall cost. This paper investigates the possibility to partially overcome these limits by a low-cost detection system based on a suitable commercial sensor (TGS 2442, Figaro, Inc.) and an ad hoc measurement technique exploiting specifically tailored temperature profiles. To this aim, the authors study the dynamic behavior of low-power CO MOX sensors operated with pulsed temperature profiles by means of two approaches: 1) sensor modeling and 2) experimental evaluation. To analyze how the sensor dynamic response changes as a function of the CO concentration, the authors individuate a temperature profile, which ensures satisfactory sensitivity to the target gas and very low power consumption. Moreover, some parameters describing the sensor response shape are selected, which prove to be significant in terms of both robustness to environmental conditions and calibration simplicity.

Published in:

Instrumentation and Measurement, IEEE Transactions on  (Volume:58 ,  Issue: 5 )