Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 5:00 PM ET (12:00 - 21:00 UTC). We apologize for the inconvenience.
By Topic

Optimum Receiver Array Design for Magnetic Induction Tomography

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Gursoy, D. ; Inst. of Med. Eng., Graz Univ. of Technol., Graz ; Scharfetter, H.

Magnetic induction tomography (MIT) is an imaging modality that aims at mapping the distribution of the electrical conductivity inside the body. Eddy currents are induced in the body by magnetic induction and the resulting fields are measured by an array of receiver coils. In MIT, the location of the receivers affects the quality of the image reconstruction. In this paper, a fast deterministic algorithm was applied to obtain optimum receiver array designs for a given specific excitation. The design strategy is based on the iterative exclusion of receiver locations, which yield poor conductivity information, from the space spanning all possible locations until a feasible design is reached. The applicability of ldquoregionally focusedrdquo MIT designs that increase the image resolution at a particular region was demonstrated. Currently used design geometries and the corresponding reconstructed images were compared to the images obtained by optimized designs. The eigenvalue analysis of the Hessian matrix showed that the algorithm tends to maintain identical conductivity information content sensed by the receivers. Although the method does not guarantee finding the optimum design globally, the results demonstrate the practical usability of this algorithm in MIT experimental designs.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:56 ,  Issue: 5 )