By Topic

Face Active Appearance Modeling and Speech Acoustic Information to Recover Articulation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Athanassios Katsamanis ; Sch. of Electr. & Comput. Eng., Nat. Tech. Univ. of Athens, Athens ; George Papandreou ; Petros Maragos

We are interested in recovering aspects of vocal tract's geometry and dynamics from speech, a problem referred to as speech inversion. Traditional audio-only speech inversion techniques are inherently ill-posed since the same speech acoustics can be produced by multiple articulatory configurations. To alleviate the ill-posedness of the audio-only inversion process, we propose an inversion scheme which also exploits visual information from the speaker's face. The complex audiovisual-to-articulatory mapping is approximated by an adaptive piecewise linear model. Model switching is governed by a Markovian discrete process which captures articulatory dynamic information. Each constituent linear mapping is effectively estimated via canonical correlation analysis. In the described multimodal context, we investigate alternative fusion schemes which allow interaction between the audio and visual modalities at various synchronization levels. For facial analysis, we employ active appearance models (AAMs) and demonstrate fully automatic face tracking and visual feature extraction. Using the AAM features in conjunction with audio features such as Mel frequency cepstral coefficients (MFCCs) or line spectral frequencies (LSFs) leads to effective estimation of the trajectories followed by certain points of interest in the speech production system. We report experiments on the QSMT and MOCHA databases which contain audio, video, and electromagnetic articulography data recorded in parallel. The results show that exploiting both audio and visual modalities in a multistream hidden Markov model based scheme clearly improves performance relative to either audio or visual-only estimation.

Published in:

IEEE Transactions on Audio, Speech, and Language Processing  (Volume:17 ,  Issue: 3 )