By Topic

Grid Resource Allocation by Means of Option Contracts

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Bossenbroek, A. ; Sect. Comput. Sci., Univ. van Amsterdam, Amsterdam ; Tirado-Ramos, A. ; Sloot, P.M.A.

In Grid environments, where virtual organization resources are allocated to users using mechanisms analogue to market economies, strong price fluctuations can have an impact on the nontrivial quality-of-service expected by end users. In this paper, we investigate the effects of the use of option contracts on the quality of service offered by a broker-based Grid resource allocation model. Option contracts offer users the possibility to buy or sell Grid resources in the future for a strike price specified in a contract. By buying, borrowing and selling option contracts using a hedge strategy users can benefit from expected price changes. In this paper, we consider three hedge strategies: the butterfly spread which profits from small changes, the straddle which benefits from large price changes, and the call strategy which benefits from soaring prices. Using our model based on an abstract Grid architecture, we find that the use of hedge strategies augment the ratio of successfully finished jobs to failed jobs. We show that the degree of successfulness from hedge strategies changes when the number of contributed resources changes. By means of a model, we also show that the effects of the butterfly spread is mainly explained by the amount of contributed resources. The dynamics of the two other hedge strategies are best explained by observing the price behavior. We also find that by using hedge strategies the users can increase the probability that a job will finish before the deadline. We conclude that hedging using options is a promising approach to improve resource allocation in environments where resources are allocated by using a commodity market mechanism.

Published in:

Systems Journal, IEEE  (Volume:3 ,  Issue: 1 )