Cart (Loading....) | Create Account
Close category search window
 

Distribution-Driven Visualization of Volume Data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Johnson, C.R. ; Dept. of Electr. Eng. & Comput. Sci., Univ. of Tennessee, Knoxville, TN, USA ; Huang, J.

Feature detection and display are the essential goals of the visualization process. Most visualization software achieves these goals by mapping properties of sampled intensity values and their derivatives to color and opacity. In this work, we propose to explicitly study the local frequency distribution of intensity values in broader neighborhoods centered around each voxel. We have found frequency distributions to contain meaningful and quantitative information that is relevant for many kinds of feature queries. Our approach allows users to enter predicate-based hypotheses about relational patterns in local distributions and render visualizations that show how neighborhoods match the predicates. Distributions are a familiar concept to nonexpert users, and we have built a simple graphical user interface for forming and testing queries interactively. The query framework readily applies to arbitrary spatial data sets and supports queries on time variant and multifield data. Users can directly query for classes of features previously inaccessible in general feature detection tools. Using several well-known data sets, we show new quantitative features that enhance our understanding of familiar visualization results.

Published in:

Visualization and Computer Graphics, IEEE Transactions on  (Volume:15 ,  Issue: 5 )

Date of Publication:

Sept.-Oct. 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.