By Topic

Lessons for Radar

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Michele Vespe ; European Commission Joint Research Centre ; Gareth Jones ; Chris J. Baker

Echolocating mammals such as bats, whales and dolphins have been using waveform diversity for over 50 million years. Synthetic systems such as sonar and radar have existed for fewer than 100 years. Given the extraordinary capability of echolocating mammals it seems self-evident that designers of radar (and sonar) systems may be able to learn lessons that may potentially revolutionize current radar-based capability leading to truly autonomous navigation, collision avoidance, and automatic target classification. Echolocating mammals have been little studied in relation to the operation of radar and sonar systems. In this article, we introduce a range of strategies employed by bats and consider how these might be exploitable in the radar systems of tomorrow. Specifically, we concentrate on the functions necessary for autonomous navigation. Echolocating mammals are known to vary their waveforms via modification to the pulse-repetition frequency (PRF), also known to biologists as pulse-repetition rate (PRR), power, and frequency content of their transmitted waveforms. This has enabled them to evolve highly sophisticated orientation techniques and the ability to successfully forage for food. Moreover, recent developments in technology mean that it is now possible to replicate these parametric variations in synthetic sensing systems such as radar and sonar.

Published in:

IEEE Signal Processing Magazine  (Volume:26 ,  Issue: 1 )