By Topic

Characterization of in-building UHF wireless radio communication channels using spectral energy measurements

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
B. P. Donaldson ; Quadrus Res. & Dev., Calgary, Alta., Canada ; M. Fattouche ; R. W. Donaldson

A simple, cost-effective means is developed to estimate the time-invariant wireless radio channel impulse response h(t) using only the magnitude of the channel transfer function, H(jw). The Hilbert transform is used to calculate the phase of H(jw) from its magnitude. Inverse discrete Fourier transformation (IDFT) of H(jw) yields h(t). The Hilbert transform relation is applicable provided H(jw) is a minimum phase transfer function. An experimental in-building wireless channel testbed was established, for which h(t) was determined over the 1000-2500 MHz range. Both line of sight (LOS) and non-LOS transmission was investigated. Good agreement was observed between values of h(t) calculated from measured values of H(jw) and from those based only on [H(jw)] and its Hilbert transform. Even when the minimum phase condition is violated, h(t) as calculated from [H(jw)] and its Hilbert transform provides a useful lower bound on the time-spread of h(t). The measurement of [H(jw)] is easily implemented using a signal source, receiving antenna, and spectrum analyzer. A personal computer and software are required to calculate the phase of H(jw) and its IDTF. Existing frequency-domain measurement schemes utilize a vector network analyzer to measure H(jw) (magnitude and phase angle). Such equipment is expensive, subject to transmitter-receiver crosstalk, and restrictive as to the relative locations of the transmitting and receiving antenna

Published in:

IEEE Transactions on Antennas and Propagation  (Volume:44 ,  Issue: 1 )