By Topic

Nonparametric Discriminant Analysis for Face Recognition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Zhifeng Li ; Dept. of Syst. Eng. & Eng. Manage., Chinese Univ. of Hong Kong, Hong Kong ; Dahua Lin ; Xiaoou Tang

In this paper, we develop a new framework for face recognition based on nonparametric discriminant analysis (NDA) and multi-classifier integration. Traditional LDA-based methods suffer a fundamental limitation originating from the parametric nature of scatter matrices, which are based on the Gaussian distribution assumption. The performance of these methods notably degrades when the actual distribution is Non-Gaussian. To address this problem, we propose a new formulation of scatter matrices to extend the two-class nonparametric discriminant analysis to multi-class cases. Then, we develop two more improved multi-class NDA-based algorithms (NSA and NFA) with each one having two complementary methods based on the principal space and the null space of the intra-class scatter matrix respectively. Comparing to the NSA, the NFA is more effective in the utilization of the classification boundary information. In order to exploit the complementary nature of the two kinds of NFA (PNFA and NNFA), we finally develop a dual NFA-based multi-classifier fusion framework by employing the over complete Gabor representation to boost the recognition performance. We show the improvements of the developed new algorithms over the traditional subspace methods through comparative experiments on two challenging face databases, Purdue AR database and XM2VTS database.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:31 ,  Issue: 4 )