By Topic

Alumina/epoxy nanocomposite matching layers for high-frequency ultrasound transducer application

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Qifa Zhou ; with the Department of Biomedical Engineering and NIH Transducer Resource Center, University of Southern California, Los Angeles, CA. ; Jung Hyui Cha ; Yuhong Huang ; Rui Zhang
more authors

Mismatch of acoustic impedance at the interface between a piezoelectric transducer and the medium to be probed will substantially reduce the amount of ultrasound energy being transmitted into the medium. Therefore, matching layer is a critical component of an ultrasonic transducer. A spin-coating process was used to fabricate alumina/polymer nanocomposite films with alumina volume fractions ranging from 14 to 32%. The particle size of alumina is in the range of 10 to 40 nm. The thicknesses of the matching layer can be controlled by the spinning speed and the concentration of solution. Acoustic impedances of these nanocomposite matching layers are in the range of 2.8 to 5.1 MRayls with different alumina contents, which meet the matching layer requirement. The attenuation of a nanocomposite matching layer with smooth surface is about 15 dB/mm at 40 MHz. The pulse-echo spectrum and frequency spectrum of a high-frequency transducer using this nanocomposite matching layer are reported.

Published in:

IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control  (Volume:56 ,  Issue: 1 )