By Topic

FPGA-based elman neural network control system for linear ultrasonic motor

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Faa-Jeng Lin ; Dept. of Electr. Eng., Nat. Central Univ., Chungli ; Ying-Chih Hung

A field-programmable gate array (FPGA)-based Elman neural network (ENN) control system is proposed to control the mover position of a linear ultrasonic motor (LUSM) in this study. First, the structure and operating principle of the LUSM are introduced. Because the dynamic characteristics and motor parameters of the LUSM are nonlinear and time-varying, an ENN control system is designed to achieve precision position control. The network structure and online learning algorithm using delta adaptation law of the ENN are described in detail. Then, a piecewise continuous function is adopted to replace the sigmoid function in the hidden layer of the ENN to facilitate hardware implementation. In addition, an FPGA chip is adopted to implement the developed control algorithm for possible low-cost and high-performance industrial applications. The effectiveness of the proposed control scheme is verified by some experimental results.

Published in:

Ultrasonics, Ferroelectrics, and Frequency Control, IEEE Transactions on  (Volume:56 ,  Issue: 1 )