Cart (Loading....) | Create Account
Close category search window
 

Effect of Intergranular Exchange on the Thermal Stability and Coercive Field of Perpendicular, Single Phase, Exchange Spring, and Coupled Granular Continuous (CGC) Perpendicular Recording Media

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

9 Author(s)
Suess, D. ; Vienna Univ. of Technol., Vienna ; Lee, J. ; Fidler, J. ; Jung, H.S.
more authors

We performed micromagnetic simulations in order to investigate the effect of intergranular exchange coupling on the magnetic properties of advanced magnetic recording structures. We found that the coercive field of granular recording media decreases with increasing intergrain exchange coupling (A int). We observed this decay even for perfect films without switching field distributions and soft magnetic inclusions. A mean field exchange field of about mu0 H ex = 0.34 T leads to the same thermal stability of the grains at the transition and in the center of a bit. A larger value of A int lowers the thermal stability of the grains close to the transitions. Micromagnetic simulations of coupled granular continuous (CGC) media indicate that the top layer in CGC media is not continuous. The simulations suggest that the top layer is granular with a relatively weak intergrain exchange coupling, A int.

Published in:

Magnetics, IEEE Transactions on  (Volume:45 ,  Issue: 1 )

Date of Publication:

Jan. 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.