By Topic

Control-Relevant Demand Forecasting for Tactical Decision-Making in Semiconductor Manufacturing Supply Chain Management

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)

Forecasting highly uncertain demand signals is an important component for successfully managing inventory in semiconductor supply chains. We present a control-relevant approach to the problem that tailors a forecasting model to its end-use purpose, which is to provide forecast signals for a tactical inventory management policy based on model predictive control (MPC). The success of the method hinges on a control-relevant prefiltering operation applied to demand estimation data that emphasizes a goodness-of-fit in regions of time and frequency most important for achieving desired levels of closed-loop performance. A multiobjective formulation is presented that allows the supply-chain planner to generate demand forecasts that minimize inventory deviation, starts change variance, or their weighted combination when incorporated in an MPC decision policy. The benefits obtained from this procedure are demonstrated on a case study drawn from the final stage of a semiconductor manufacturing supply chain.

Published in:

IEEE Transactions on Semiconductor Manufacturing  (Volume:22 ,  Issue: 1 )