Cart (Loading....) | Create Account
Close category search window
 

Tm-Doped Fiber Lasers: Fundamentals and Power Scaling

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)

We describe fundamental measurements of the properties of thulium (Tm)-doped silica and power scaling studies of fiber lasers based on the material. Data on the high-lying Tm:silica energy levels, the first taken to our knowledge, indicate that pumping at 790 nm is unlikely to lead to fiber darkening via multiphoton excitation. Measurement of the cross-relaxation dynamics produces an estimate that, at the doping levels used, as much as 80% of the decay of the Tm level pumped is due to cross relaxation. Using a fiber having a 25-mum-diameter, 0.08 numerical aperture (NA) core, we observed fiber laser efficiencies as high as 64.5% and output powers of 300 W (around 2040 nm) for 500 W of launched pump power, with a nearly diffraction-limited beam. At these efficiencies, the cross-relaxation process was producing 1.8 laser photons per pump photon. We generated 885 W from a multimode laser using a 35-mum, 0.2-NA core fiber and set a new record for Tm-doped fiber laser continuous-wave power.

Published in:

Selected Topics in Quantum Electronics, IEEE Journal of  (Volume:15 ,  Issue: 1 )

Date of Publication:

Jan. 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.