By Topic

Improving Hyperspectral Image Classification Using Spatial Preprocessing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Velasco-Forero, S. ; Center of Math. Morphology, Sch. of Mines, Paris ; Manian, V.

Spatial smoothing over the original hyperspectral data based on wavelet and anisotropic partial differential equations is incorporated using composite kernel in graph-based classifiers. The kernels combine spectral-spatial relationships using the smoothed and original hyperspectral images. Experiments with different real hyperspectral scenarios are presented. Comparison with recent graph-based methods shows that the proposed scheme gives better classification with lower computational cost.

Published in:

Geoscience and Remote Sensing Letters, IEEE  (Volume:6 ,  Issue: 2 )