By Topic

IMM-Based Lane-Change Prediction in Highways With Low-Cost GPS/INS

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Toledo-Moreo, R. ; Dept. of Electron. & Comput. Technol., Tech. Univ. of Cartagena, Cartagena ; Zamora-Izquierdo, M.A.

The prediction of lane changes has been proven to be useful for collision avoidance support in road vehicles. This paper proposes an interactive multiple model (IMM)-based method for predicting lane changes in highways. The sensor unit consists of a set of low-cost Global Positioning System/inertial measurement unit (GPS/IMU) sensors and an odometry captor for collecting velocity measurements. Extended Kalman filters (EKFs) running in parallel and integrated by an IMM-based algorithm provide positioning and maneuver predictions to the user. The maneuver states Change Lane (CL) and Keep Lane (KL) are defined by two models that describe different dynamics. Different model sets have been studied to meet the needs of the IMM-based algorithm. Real trials in highway scenarios show the capability of the system to predict lane changes in straight and curved road stretches with very short latency times.

Published in:

Intelligent Transportation Systems, IEEE Transactions on  (Volume:10 ,  Issue: 1 )