By Topic

Tunable Terahertz Signals Using a Helicoidally Polarized Ceramic Microchip Laser

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
McKay, A. ; Dept. of Phys., Macquarie Univ., Sydney, NSW ; Dawes, J.M.

A two-frequency microchip laser based on highly doped ceramic Nd:YAG and twisted polarization modes is presented. The frequency difference between modes was tunable continuously over a frequency range of 150 GHz, from radio frequency to terahertz frequencies. This tuning is limited by the gain bandwidth of the neodymium-doped YAG laser medium. The long-term frequency stability of the resulting narrow-linewidth beat-note signal is very good. This offers a simple, yet widely tunable terahertz source with potential for portable frequency reference applications.

Published in:

Photonics Technology Letters, IEEE  (Volume:21 ,  Issue: 7 )